CPU Cache是如何映射与寻址的?
作者:小牛呼噜噜 | https://xiaoniuhululu.github.io
计算机内功、源码解析、科技故事、项目实战、面试八股等更多硬核文章,首发于公众号「小牛呼噜噜」
哈喽,大家好,我是呼噜噜,在上一篇文章我们介绍了突破计算机性能瓶颈的利器CPU Cache,今天我们来聊聊CPU Cache的组织结构及其它是如何映射与寻址的?
CPU Cache的组织结构
CPU Cache
的组织结构:CPU Cache
被划分成多个组Set
,每个Set
中还可以有多个行Cache Line
,需要注意的是Cache Line是CPU Cache中的基本缓存单位,也有人叫它块(Block),也就是说它每次读写不是一个字节的去读写,而是以Cache Line
为单位,一块块地去读取
一般主流的 CPU 的 Cache Line
大小是64 Byte,当然也有其他大小,在Cache块比较小的时候,这时的命中率很低,随着块大小的增加,空间局部性起作用,命中率会快速提高;如下图:
这种增加趋势在某一个最佳块大小处达到最大值。当到达顶峰以后,命中率随着块大小的增加反而会逐渐降低。因为当块大小非常大时,进入Cache中的许多数据可能根本用不上,同时随着块继续增大,时间局部性会逐渐失去作用
而 CPU Line
又由有效标志Valid
、标志Tag
、数据块Data
这3个部分组成,其中data是真正要来缓存一片连续内存地址中的数据,而tag是用来查找Cache Line的标志,存储这片连续数据的公共地址,valid表示当前缓存的数据是否有效,也可以用来协助查找Cache Line
可以参考下图:
Cache与内存地址映射
我们知道高速缓存的速度要远远快于主存(内存)的速度,但Cache的容量却是远远小于主存,相较于主存的价格,缓存则昂贵的多
另一方面CPU Cache是需要缓存内存中的数据,无论对Cache数据读取还是写入,CPU都需要知道访问的内存数据,对应于Cache上的哪个位置,而由于Cache容量不够,无法做到Cache与内存地址一一对应
那么Cache是如何与内存地址进行映射的?
其实CPU Cache
主要有3种的实现方式:
- 直接映射(direct-mapped),也就是每个
组Set
只有一个Cache Line
,选中Set之后不需要和Set中的每个Line进行比对 - 全相连映射(fully associative),即只有一个Set,所以这个Set中包含所有的Line
- 组相连映射(set-associative ), 有多个Set,每个Set有多个Line;需要注意的是,组相连也会被称为路Way,比如6路组相联,表示每个Set有6个Line
直接映射
直接映射会在内存块和缓存块之间建立起固定的映射关系,也就是内存中的某个块总是映射到Cache的一特定块上
在Linux内核中,并非总使用基于我们更熟悉的页来当页缓存。内核的早期版本使用了块缓存,来加速文件系统,提高系统性能
我们这里以8块主存和4块(行)为例,具体如下图所示:
通过上图,我们可以发现B0块和B4块主存只能映射到Cache的第0块,B3块和B7块只能只能映射到Cache的第3块,其他内存块同理
其实相当于给主存空间按照Cache Line
的大小(也就是Line的行数)来进行分区,每个内存块编号需要与Cache Line
的大小取模,得到固定的映射位置即区内编号,映射到与它区内编号相同的Cache Line
上
可以发现直接映射的优点:查找效率高,硬件设备简单,地址变换速度快,但是它也有缺点:由于每个主存块只有一个固定位置可存放,即使Cache中别的Line空着也不能占用,无法充分利用Cache空间,这样冲突概率较大
如果冲突了,这多个内存块会不断地交替装入固定的映射Cache Line中,导致缓存命中率降低,所以直接映射适合大容量Cache
全相联映射
全相联映射 主存的数据可以放在任意一个Cache line中,映射方式比较灵活,Cache的利用率高,块冲突的概率低,因为只有当所有的Line都被占满后才会出现冲突
但是另一方面,访问缓存时,每次都要和全部Line中的内存进行比较,速度低延迟高是它无法避免的缺点,因此适合于小容量Cache采用
组相联映射
组相联映射是直接映射和全相联映射的折中方案,吸取2者的优点,尽量避免2者的缺点,组间采用直接映射,组内采用全相联映射,即主存块存放到哪个组Set是固定的,存到Set内哪一个Cache Line
是灵活随意的
当查找缓存时,不再需要全部进行遍历,只需先查到cache的组号,然后在那一组内,进行小范围遍历。这样冲突概率较小,同时命中率较高,所以这种方式在现代的处理器中得到了广泛的应用
Cache寻址方式
通过前文的阅读,相信大家都对CPU Cache的组织结构和Cache与内存地址映射方式有所了解,而Intel多数处理器的 L1 Cache 都是32KB,8-Way 组相联,Cache Line 是 64 Byte
,我们以这个参数为例,来看看Cache是如何寻址的?
因为Cache Line是最小单位(64Bytes),所以可以得出Cache Line的条数 = 32KB /64=512,每一Way的Cache Line条数 = 512 / 8 = 64(也就是每一个Set的Cache Line条数)
那么我们可以得到,每一Set的内存大小 = 64 x 64 = 4096B=4KB
,是不是很熟悉,这不正是一个内存页page的大小嘛!本文前面用块来划分内存,和页一样都是内存划分的方式,在操作系统中,页是固定大小的存储单元,而块是可变大小的存储单元
首先我们得知道内存地址如何被分解?内存地址被分成了3部分:tag, set index和block offset
- tag:与Cache Line中的tag匹配,内存地址的前24bit
- set index:set索引,用来寻找定位Set,内存地址中间的6个bit,正好能查询2^6=64个line
- block offset:块偏移量,用来寻找Cache Line里data中的内存数据,内存地址最后6位
那么Cache寻址的具体方式,我们可以将其分为3个步骤:
- 先根据set index来找到对应的Set
- 接着根据tag在上一步步找到的set中找到对应的
Cache Line
,如果找到且对应的有效位valid
为1,表示缓存命中,反之无论其中的tag和Cache Line
里的数据内容是什么,CPU 都不会管这些数据,而是会直接访问主存,重新加载数据(当然这里涉及到缓存一致性的问题,比较复杂,先挖个坑,本文暂不讲解),那如果没找到,说明当前发生cache缺失,即cache miss - 最后根据
block offset
在上一步找到的Cache Line的data中找到对应内存的数据
笔者这里再吐血画了张图,帮助大家更加直观了解Cache寻址的具体方式
VIVT、VIPT、PIPT(补充)
最后再介绍一下几个概念,就是Cache寻址时,可以根据物理地址,也可以根据虚拟地址,或者二者结合起来查找
- VIVT(Virtually Indexed, Virtually Tagged )表示index和tag都是采用虚拟地址
- VIPT(Virtually Indexed, Physically Tagged )表示index采用虚拟地址,tag采用物理地址,一般用于
L1 Cache
- PIPT(Physically Indexed, Physically Tagged )表示index采用物理地址,tag采用物理地址,一般用于
L2 Cache
尾语
本文先后介绍了CPU Cache的组织结构,Cache与内存地址映射的3种方式,以组相联Cache来讲解Cache的寻址方式,画图太耗心神了,先到这了,后面我们继续更新Cache的缓存一致性,提高代码性能等难点
参考资料:
《Cache: a place for concealment and safekeeping》
https://blog.csdn.net/qq_38768922/article/details/78737284
http://staff.ustc.edu.cn/~hdrq/jsjzcyl/text/chapter5/sec3/part4/r1.htm
全文完,感谢您的阅读,如果我的文章对你有所帮助的话,还请点个免费的赞,你的支持会激励我输出更高质量的文章,感谢!
计算机内功、源码解析、科技故事、项目实战、面试八股等更多硬核文章,首发于公众号「小牛呼噜噜」,我们下期再见!